Show simple item record

dc.contributor.authorSon, Reuben S.en_US
dc.contributor.authorSmith, Kyle C.en_US
dc.contributor.authorGowrishankar, Thiruvallur R.en_US
dc.contributor.authorVernier, P. Thomasen_US
dc.contributor.authorWeaver, James C.en_US
dc.date.accessioned2014-12-02T21:28:25Z
dc.date.issued2014en_US
dc.identifier.citationSon, Reuben S., Kyle C. Smith, Thiruvallur R. Gowrishankar, P. Thomas Vernier, and James C. Weaver. 2014. “Basic Features of a Cell Electroporation Model: Illustrative Behavior for Two Very Different Pulses.” The Journal of Membrane Biology 247 (12): 1209-1228. doi:10.1007/s00232-014-9699-z. http://dx.doi.org/10.1007/s00232-014-9699-z.en
dc.identifier.issn0022-2631en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:13454728
dc.description.abstractScience increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative “long” and “short” pulses. The long pulse—1.5 kV/cm, 100 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}s—evolves two pore subpopulations with a valley at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}$$\end{document}5 nm, which separates the subpopulations that have peaks at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}$$\end{document}1.5 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}$$\end{document}12 nm radius. Such pulses are widely used in biological research, biotechnology, and medicine, including cancer therapy by drug delivery and nonthermal physical tumor ablation by causing necrosis. The short pulse—40 kV/cm, 10 ns—creates 80-fold more pores, all small (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document}3 nm; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}1 nm peak). These nanosecond pulses ablate tumors by apoptosis. We demonstrate the model’s responses by illustrative electrical and poration behavior, and transport of calcein and propidium. We then identify extensions for expanding modeling capability. Structure-function results from MD can allow extrapolations that bring response specificity to cell membranes based on their lipid composition. After a pulse, changes in pore energy landscape can be included over seconds to minutes, by mechanisms such as cell swelling and pulse-induced chemical reactions that slowly alter pore behavior. Electronic supplementary material The online version of this article (doi:10.1007/s00232-014-9699-z) contains supplementary material, which is available to authorized users.en
dc.language.isoen_USen
dc.publisherSpringer USen
dc.relation.isversionofdoi:10.1007/s00232-014-9699-zen
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224743/pdf/en
dash.licenseLAAen_US
dc.subjectCell electroporationen
dc.subjectComputational modelen
dc.subjectElectrical behavioren
dc.subjectPoration behavioren
dc.subjectSolute transporten
dc.titleBasic Features of a Cell Electroporation Model: Illustrative Behavior for Two Very Different Pulsesen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalThe Journal of Membrane Biologyen
dash.depositing.authorWeaver, James C.en_US
dc.date.available2014-12-02T21:28:25Z
dc.identifier.doi10.1007/s00232-014-9699-z*
dash.contributor.affiliatedWeaver, James


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record