Analysis of growth factor signaling in genetically diverse breast cancer lines

DSpace/Manakin Repository

Analysis of growth factor signaling in genetically diverse breast cancer lines

Citable link to this page


Title: Analysis of growth factor signaling in genetically diverse breast cancer lines
Author: Niepel, Mario; Hafner, Marc; Pace, Emily A; Chung, Mirra; Chai, Diana H; Zhou, Lili; Muhlich, Jeremy L; Schoeberl, Birgit; Sorger, Peter K

Note: Order does not necessarily reflect citation order of authors.

Citation: Niepel, Mario, Marc Hafner, Emily A Pace, Mirra Chung, Diana H Chai, Lili Zhou, Jeremy L Muhlich, Birgit Schoeberl, and Peter K Sorger. 2014. “Analysis of growth factor signaling in genetically diverse breast cancer lines.” BMC Biology 12 (1): 20. doi:10.1186/1741-7007-12-20.
Full Text & Related Files:
Abstract: Background: Soluble growth factors present in the microenvironment play a major role in tumor development, invasion, metastasis, and responsiveness to targeted therapies. While the biochemistry of growth factor-dependent signal transduction has been studied extensively in individual cell types, relatively little systematic data are available across genetically diverse cell lines. Results: We describe a quantitative and comparative dataset focused on immediate-early signaling that regulates the AKT (AKT1/2/3) and ERK (MAPK1/3) pathways in a canonical panel of well-characterized breast cancer lines. We also provide interactive web-based tools to facilitate follow-on analysis of the data. Our findings show that breast cancers are diverse with respect to ligand sensitivity and signaling biochemistry. Surprisingly, triple negative breast cancers (TNBCs; which express low levels of ErbB2, progesterone and estrogen receptors) are the most broadly responsive to growth factors and HER2amp cancers (which overexpress ErbB2) the least. The ratio of ERK to AKT activation varies with ligand and subtype, with a systematic bias in favor of ERK in hormone receptor positive (HR+) cells. The factors that correlate with growth factor responsiveness depend on whether fold-change or absolute activity is considered the key biological variable, and they differ between ERK and AKT pathways. Conclusions: Responses to growth factors are highly diverse across breast cancer cell lines, even within the same subtype. A simple four-part heuristic suggests that diversity arises from variation in receptor abundance, an ERK/AKT bias that depends on ligand identity, a set of factors common to all receptors that varies in abundance or activity with cell line, and an “indirect negative regulation” by ErbB2. This analysis sets the stage for the development of a mechanistic and predictive model of growth factor signaling in diverse cancer lines. Interactive tools for looking up these results and downloading raw data are available at
Published Version: doi:10.1186/1741-7007-12-20
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search