Atmospheric Peroxyacetyl Nitrate (PAN): A Global Budget and Source Attribution

DSpace/Manakin Repository

Atmospheric Peroxyacetyl Nitrate (PAN): A Global Budget and Source Attribution

Citable link to this page


Title: Atmospheric Peroxyacetyl Nitrate (PAN): A Global Budget and Source Attribution
Author: Fischer, E. V.; Jacob, Daniel James; Yantosca, Robert M.; Sulprizio, Melissa Payer; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

Note: Order does not necessarily reflect citation order of authors.

Citation: Fischer, E. V., Daniel James Jacob, Robert M. Yantosca, Melissa Payer Sulprizio, D. B. Millet, J. Mao, F. Paulot, et al. 2014. “Atmospheric Peroxyacetyl Nitrate (PAN): A Global Budget and Source Attribution.” Atmospheric Chemistry and Physics 14 (5): 2679–2698.
Full Text & Related Files:
Abstract: Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals \((NO_x = NO + NO_2)\). PAN enables the transport and release of \(NO_x\) to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning \(NO_x\) is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.
Published Version: doi:10.5194/acp-14-2679-2014
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search