Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

View/ Open
Author
Eickenberg, Bernhard
Meyer, Judith
Helmich, Lars
Kappe, Daniel
Auge, Alexander
Weddemann, Alexander
Wittbracht, Frank
Hütten, Andreas
Published Version
https://doi.org/10.3390/bios3030327Metadata
Show full item recordCitation
Eickenberg, Bernhard, Judith Meyer, Lars Helmich, Daniel Kappe, Alexander Auge, Alexander Weddemann, Frank Wittbracht, and Andreas Hütten. 2013. “Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface.” Biosensors 3 (3): 327-340. doi:10.3390/bios3030327. http://dx.doi.org/10.3390/bios3030327.Abstract
Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263578/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13890658
Collections
- FAS Scholarly Articles [18054]
Contact administrator regarding this item (to report mistakes or request changes)