Chronic variable stress activates hematopoietic stem cells

View/ Open
Author
Heidt, Timo
Iwamoto, Yoshiko
Zaltsman, Alex
von zur Muhlen, Constantin
Bode, Christoph
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1038/nm.3589Metadata
Show full item recordCitation
Heidt, T., H. B. Sager, G. Courties, P. Dutta, Y. Iwamoto, A. Zaltsman, C. von zur Muhlen, et al. 2014. “Chronic variable stress activates hematopoietic stem cells.” Nature medicine 20 (7): 754-758. doi:10.1038/nm.3589. http://dx.doi.org/10.1038/nm.3589.Abstract
Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087061/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13890692
Collections
- HMS Scholarly Articles [18305]
Contact administrator regarding this item (to report mistakes or request changes)