Hybrid Hydrogels with Extremely High Stiffness and Toughness
Citation
Li, Jianyu, Widusha R. K. Illeperuma, Zhigang Suo, and Joost J. Vlassak. 2014. “Hybrid Hydrogels with Extremely High Stiffness and Toughness.” ACS Macro Lett. (May 19): 520–523. doi:10.1021/mz5002355.Abstract
The development of hydrogels for cartilage replacement and soft robotics has highlighted a challenge: load-bearing hydrogels need to be both stiff and tough. Several approaches have been reported to improve the toughness of hydrogels, but simultaneously achieving high stiffness and toughness remains difficult. Here we report that alginate-polyacrylamide hydrogels can simultaneously achieve high stiffness and toughness. We combine short- and long-chain alginates to reduce the viscosity of pregel solutions and synthesize homogeneous hydrogels of high ionic cross-link density. The resulting hydrogels can have elastic moduli of ∼1 MPa and fracture energies of ∼4 kJ m–2. Furthermore, this approach breaks the inverse relation between stiffness and toughness: while maintaining constant elastic moduli, these hydrogels can achieve fracture energies up to ∼16 kJ m–2. These stiff and tough hydrogels hold promise for further development as load-bearing materials.Other Sources
http://www.seas.harvard.edu/suo/papers2/322.pdfTerms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13910151
Collections
- FAS Scholarly Articles [18154]
Contact administrator regarding this item (to report mistakes or request changes)