A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception

DSpace/Manakin Repository

A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception

Citable link to this page

 

 
Title: A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception
Author: Bastien, Renaud; Douady, Stéphane; Moulia, Bruno

Note: Order does not necessarily reflect citation order of authors.

Citation: Bastien, Renaud, Stéphane Douady, and Bruno Moulia. 2015. “A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception.” PLoS Computational Biology 11 (2): e1004037. doi:10.1371/journal.pcbi.1004037. http://dx.doi.org/10.1371/journal.pcbi.1004037.
Full Text & Related Files:
Abstract: Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism.
Published Version: doi:10.1371/journal.pcbi.1004037
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332863/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:14065414
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters