Show simple item record

dc.contributor.authorJacob, Daniel James
dc.contributor.authorMunger, J. William
dc.contributor.authorWaldman, Jed M.
dc.contributor.authorHoffmann, Michael R.
dc.date.accessioned2015-03-11T18:31:22Z
dc.date.issued1986
dc.identifier.citationJacob, Daniel J., J. William Munger, Jed M. Waldman, and Michael R. Hoffmann. 1986. “The H 2 SO 4 -HNO 3 -NH 3 System at High Humidities and in Fogs: 1. Spatial and Temporal Patterns in the San Joaquin Valley of California.” Journal of Geophysical Research 91, issue D1: 1073-1088.en_US
dc.identifier.issn0148-0227en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:14117810
dc.description.abstractA systematic characterization of the atmospheric H2SO4-HNO3-NH3 system was conducted in the fog water, the aerosol, and the gas phase at a network of sites in the San Joaquin Valley of California. Spatial patterns of concentrations were established that reflect the distribution of SO2, NOx, and NH3 emissions within the valley. The concept of atmospheric alkalinity was introduced to interpret these concentrations in terms of the buffering capacity of the atmosphere with respect to inputs of strong acids. Regions of predominantly acidic and alkaline fog water were identified. Fog water was found to be alkaline in most of the valley, but small changes in emission budgets could lead to widespread acid fog. An extended stagnation episode was studied in detail: progressive accumulation of H2SO4-HNO3-NH3 species was documented over the course of the episode and interpreted in terms of production and removal mechanisms. Secondary production of strong acids H2SO4 and HNO3 under stagnant conditions resulted in a complete titration of available alkalinity at the sites farthest from NH3 sources. A steady SO2 conversion rate of 0.4–1.1% h−1 was estimated in the stagnant mixed layer under overcast conditions and was attributed to nonphotochemical heterogeneous processes. Removal of SO2 was enhanced in fog, compared to nonfoggy conditions. Conversion of NOx to HNO3 slowed down during the stagnation episode because of reduced photochemical activity; fog did not appear to enhance conversion of NOx. Decreases in total HNO3 concentrations were observed upon acidification of the atmosphere and were attributed to displacement of NO3− by H2SO4 in the aerosol, followed by rapid deposition of HNO3(g). The occurrence of fog was associated with general decreases of aerosol concentrations due to enhanced removal by deposition.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofdoi:10.1029/JD091iD01p01073en_US
dash.licenseLAA
dc.titleThe H 2 SO 4 -HNO 3 -NH 3 system at high humidities and in fogs: 1. Spatial and temporal patterns in the San Joaquin Valley of Californiaen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalJournal of Geophysical Researchen_US
dash.depositing.authorJacob, Daniel James
dc.date.available2015-03-11T18:31:22Z
dc.identifier.doi10.1029/JD091iD01p01073*
dash.contributor.affiliatedMunger, J.
dash.contributor.affiliatedJacob, Daniel


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record