On the relative role of convection, chemistry, and transport over the South Pacific Convergence Zone during PEM-Tropics B: A case study

DSpace/Manakin Repository

On the relative role of convection, chemistry, and transport over the South Pacific Convergence Zone during PEM-Tropics B: A case study

Citable link to this page

 

 
Title: On the relative role of convection, chemistry, and transport over the South Pacific Convergence Zone during PEM-Tropics B: A case study
Author: Mari, Céline; Saüt, Carine; Jacob, Daniel James; Staudt, Amanda; Avery, Melody A.; Brune, William H.; Faloona, Ian; Heikes, Brian G.; Sachse, Glen W.; Sandholm, Scott T.; Singh, Hanwant B.; Tan, David

Note: Order does not necessarily reflect citation order of authors.

Citation: Mari, Céline, Carine Saüt, Daniel J. Jacob, Amanda Staudt, Melody A. Avery, William H. Brune, Ian Faloona, et al. 2002. “On the Relative Role of Convection, Chemistry, and Transport over the South Pacific Convergence Zone During PEM-Tropics B: A Case Study.” Journal of Geophysical Research 108 (D2) (November 16). doi:10.1029/2001jd001466.
Full Text & Related Files:
Abstract: A mesoscale 3D model (Meso-NH) is used to assess the relative importance of convection (transport and scavenging), chemistry, and advection in the vertical redistribution of HOx and their precursors in the upper tropical troposphere. The study is focused on marine deep convection over the South Pacific Convergence Zone (SPCZ) during the PEM-Tropics B Flight 10 aircraft mission. The model reproduces well the HOx mixing ratios. Vertical variations and the contrast between north and south of the SPCZ for O3 are captured. Convection uplifted O3-poor air at higher altitude, creating a minimum in the 9–12 km region, in both modeled and observed profiles. The model captured 60% of the observed HCHO variance but fails to reproduce a peak of HCHO mixing ratio at 300 hPa sampled during the northern spirals. Simulated HCHO mixing ratios underestimate observations in the marine boundary layer. In the model, convection is not an efficient process to increase upper tropospheric HCHO, and HCHO is unlikely to serve as a primary source of HOx. Convection plays an important role in the vertical distribution of CH3OOH with efficient vertical transport from the boundary layer to the 10–15 km region where it can act as a primary source of HOx. The SPCZ region acts as a barrier to mixing of tropical and subtropical air at the surface and at high altitudes (above 250 hPa). The 400–270 hPa region over the convergence zone was more permeable, allowing subtropical air masses from the Southern Hemisphere to mix with tropical air from NE of the SPCZ and to be entrained in the SPCZ-related convection. In this altitude range, exchange of subtropical and tropical air also occurs via airflow, bypassing the convective region SW and proceeding toward the north of the SPCZ.
Published Version: doi:10.1029/2001JD001466
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121758
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters