Show simple item record

dc.contributor.authorHorowitz, Larry W.
dc.contributor.authorJacob, Daniel James
dc.date.accessioned2015-03-12T14:40:44Z
dc.date.issued1999
dc.identifier.citationHorowitz, Larry W., and Daniel J. Jacob. 1999. “Global Impact of Fossil Fuel Combustion on Atmospheric NOx.” Journal of Geophysical Research 104 (D19): 23823. doi:10.1029/1999jd900205.en_US
dc.identifier.issn0148-0227en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:14121768
dc.description.abstractFossil fuel combustion is the largest global source of NOx to the troposphere. This source is concentrated in polluted continental boundary layers, and the extent to which it impacts tropospheric chemistry on a global scale is uncertain. We use a global three-dimensional model of tropospheric chemistry and transport to study the impact of fossil fuel combustion on the global distribution of NOx during nothern hemisphere summer. In the model, we tag fossil fuel NOx and its reservoir NOy species in order to determine the relative contribution of fossil fuel combustion to NOx concentrations in different regions of the world. Our model includes a detailed representation of NOx-O3-nonmethane hydrocarbon (NMHC) chemistry, which is necessary to properly simulate the export of reactive nitrogen, including organic nitrates such as peroxyacyl nitrates (PANs), from the continental boundary layer. We find that fossil fuel combustion accounts for over 40% of NOx. concentrations in the lower and middle troposphere throughout the extratropical northern hemisphere. PANs are shown to provide an important mechanism for transporting NOx from source regions to the remote troposphere, accounting for over 80% of the fossil fuel NOx in the lower troposphere over most of the ocean. Sources in the United States are found to contribute about half of the fossil fuel NOx over the North Atlantic Ocean. Emissions from China, which are expected to increase rapidly in the coming decades, currently account for about half of the fossil fuel NOx over the western North Pacific Ocean; the influence of these emissions extends into the tropics. Because of this tropical influence, emissions from China have more potential than emissions in the United States to perturb the global oxidizing power of the atmosphere.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofdoi:10.1029/1999JD900205en_US
dash.licenseLAA
dc.titleGlobal impact of fossil fuel combustion on atmospheric NOxen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalJ. Geophys. Res.en_US
dash.depositing.authorJacob, Daniel James
dc.date.available2015-03-12T14:40:44Z
dc.identifier.doi10.1029/1999JD900205*
workflow.legacycommentsCan post pub per sherpa (Publisher's version/PDF must be used in Institutional Repository 6 months after publication.)en_US
dash.contributor.affiliatedJacob, Daniel


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record