Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

DSpace/Manakin Repository

Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

Citable link to this page

 

 
Title: Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic
Author: Mauzerall, Denise L.; Logan, Jennifer A.; Jacob, Daniel James; Anderson, Bruce E.; Blake, Donald R.; Bradshaw, John D.; Heikes, Brian; Sachse, Glenn W.; Singh, Hanwant; Talbot, Bob

Note: Order does not necessarily reflect citation order of authors.

Citation: Mauzerall, Denise L., Jennifer A. Logan, Daniel J. Jacob, Bruce E. Anderson, Donald R. Blake, John D. Bradshaw, Brian Heikes, Glenn W. Sachse, Hanwant Singh, and Bob Talbot. 1998. “Photochemistry in Biomass Burning Plumes and Implications for Tropospheric Ozone over the Tropical South Atlantic.” Journal of Geophysical Research 103 (D7): 8401. doi:10.1029/97jd02612.
Full Text & Related Files:
Abstract: Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon-methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ∼20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4-km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4-km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm−2 s−1. This O3 production rate is sufficient to fully explain the observed enhancement in tropospheric O3 over the tropical South Atlantic during the dry season.
Published Version: doi:10.1029/97JD02612
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121852
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters