Annual Distributions and Sources of Arctic Aerosol Components, Aerosol Optical Depth, and Aerosol Absorption

DSpace/Manakin Repository

Annual Distributions and Sources of Arctic Aerosol Components, Aerosol Optical Depth, and Aerosol Absorption

Citable link to this page

 

 
Title: Annual Distributions and Sources of Arctic Aerosol Components, Aerosol Optical Depth, and Aerosol Absorption
Author: Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel James; Wang, Qiaoqiao; Fisher, Jenny A.; Chang, Rachel. Y.-W.; Alexander, Becky

Note: Order does not necessarily reflect citation order of authors.

Citation: Breider, Thomas J., Loretta J. Mickley, Daniel James Jacob, Qiaoqiao Wang, Jenny A. Fisher, Rachel Y.-W. Chang, and Becky Alexander. 2014. “Annual Distributions and Sources of Arctic Aerosol Components, Aerosol Optical Depth, and Aerosol Absorption.” Journal of Geophysical Research: Atmospheres 119 (7): 4107–4124.
Full Text & Related Files:
Abstract: Radiative forcing by aerosols and tropospheric ozone could play a significant role in recent Arctic warming. These species are in general poorly accounted for in climate models. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols and ozone that is consistent with observations and can be used in climate simulations. We focus on 2008, when extensive observations were made from different platforms as part of the International Polar Year. Comparison to aircraft, surface, and ship cruise observations suggests that GEOS-Chem provides in general a successful year-round simulation of Arctic black carbon (BC), organic carbon (OC), sulfate, and dust aerosol. BC has major fuel combustion and boreal fire sources, OC is mainly from fires, sulfate has a mix of anthropogenic and natural sources, and dust is mostly from the Sahara. The model is successful in simulating aerosol optical depth (AOD) observations from Aerosol Robotics Network stations in the Arctic; the sharp drop from spring to summer appears driven in part by the smaller size of sulfate aerosol in summer. The anthropogenic contribution to Arctic AOD is a factor of 4 larger in spring than in summer and is mainly sulfate. Simulation of absorbing aerosol optical depth (AAOD) indicates that non-BC aerosol (OC and dust) contributed 24% of Arctic AAOD at 550 nm and 37% of absorbing mass deposited to the snow pack in 2008. Open fires contributed half of AAOD at 550 nm and half of deposition to the snowpack.
Published Version: doi:10.1002/2013JD020996
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121879
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters