Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants

DSpace/Manakin Repository

Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants

Citable link to this page

 

 
Title: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants
Author: Russell, J. A.; Moreau, C. S.; Goldman-Huertas, B.; Fujiwara, M.; Lohman, David J.; Pierce, Naomi E.

Note: Order does not necessarily reflect citation order of authors.

Citation: Russell, J. A., C. S. Moreau, B. Goldman-Huertas, M. Fujiwara, D. J. Lohman, and N. E. Pierce. 2009. “Bacterial Gut Symbionts Are Tightly Linked with the Evolution of Herbivory in Ants.” Proceedings of the National Academy of Sciences 106, no. 50: 21236–21241.
Full Text & Related Files:
Abstract: Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with “herbivores” feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous “turtle ants” from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution.
Published Version: doi:10.1073/pnas.0907926106
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:14168858
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters