Soluble Guanylate Cyclase 1 1 Limits Stroke Size and Attenuates Neurological Injury
View/ Open
nihms-221774.pdf (485.1Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Yuzawa, Izumi
Rauwerdink, Kristen M.
Chang, Junlei
Brouckaert, Peter
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1161/STROKEAHA.109.577635Metadata
Show full item recordCitation
Atochin, D. N., I. Yuzawa, Q. Li, K. M. Rauwerdink, R. Malhotra, J. Chang, P. Brouckaert, et al. 2010. “Soluble Guanylate Cyclase 1 1 Limits Stroke Size and Attenuates Neurological Injury.” Stroke 41 (8) (July 1): 1815–1819. doi:10.1161/strokeaha.109.577635. Open manuscript version available here: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047459/Abstract
Background and Purpose— Nitric oxide mediates endothelium-dependent vasodilation, modulates cerebral blood flow, and determines stroke outcome. Nitric oxide signals in part by stimulating soluble guanylate cyclase (sGC) to synthesize cGMP. To study the role of sGC in stroke injury, we compared the outcome of cerebral ischemia and reperfusion in mice deficient in the α1 subunit of sGC (sGCα1−/−) with that in wild-type mice.Methods— Blood pressure, cerebrovascular anatomy, and vasoreactivity of pressurized carotid arteries were compared in both mouse genotypes. Cerebral blood flow was measured before and during middle cerebral artery occlusion and reperfusion. We then assessed neurological deficit and infarct volume after 1 hour of occlusion and 23 hours of reperfusion and after 24 hours of occlusion.
Results— Blood pressure and cerebrovascular anatomy were similar between genotypes. We found that vasodilation of carotid arteries in response to acetylcholine or sodium nitroprusside was diminished in sGCα1−/− compared with wild-type mice. Cerebral blood flow deficits did not differ between the genotypes during occlusion, but during reperfusion, cerebral blood flow was 45% less in sGCα1−/− mice. Infarct volumes and neurological deficits were similar after 24 hours of occlusion in both genotypes. After 1 hour of ischemia and 23 hours of reperfusion, infarct volumes were 2-fold larger and neurological deficits were worse in sGCα1−/− than in the wild-type mice.
Conclusion— sGCα1 deficiency impairs vascular reactivity to nitric oxide and is associated with incomplete reperfusion, larger infarct size, and worse neurological damage, suggesting that cGMP generated by sGCα1β1 is protective in ischemic stroke.
Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047459/Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14229256
Collections
- HMS Scholarly Articles [17842]
Contact administrator regarding this item (to report mistakes or request changes)