Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage

View/ Open
Author
Xu, Huafeng
O'Donnell, Timothy
Therkelsen, Matthew D
Kepler, Thomas B
Moody, M Anthony
Haynes, Barton F
Liao, Hua-Xin
Shaw, David E
Published Version
https://doi.org/10.1002/prot.24745Metadata
Show full item recordCitation
Xu, Huafeng, Aaron G Schmidt, Timothy O'Donnell, Matthew D Therkelsen, Thomas B Kepler, M Anthony Moody, Barton F Haynes, Hua-Xin Liao, Stephen C Harrison, and David E Shaw. 2014. “Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage.” Proteins 83 (4): 771-780. doi:10.1002/prot.24745. http://dx.doi.org/10.1002/prot.24745.Abstract
Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B-cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen-binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single-site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies. Proteins 2014; 83:771–780. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368477/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:15034766
Collections
- FAS Scholarly Articles [18172]
- HMS Scholarly Articles [17875]
Contact administrator regarding this item (to report mistakes or request changes)