Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage

DSpace/Manakin Repository

Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage

Citable link to this page

 

 
Title: Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage
Author: Xu, Huafeng; Schmidt, Aaron G; O'Donnell, Timothy; Therkelsen, Matthew D; Kepler, Thomas B; Moody, M Anthony; Haynes, Barton F; Liao, Hua-Xin; Harrison, Stephen C; Shaw, David E

Note: Order does not necessarily reflect citation order of authors.

Citation: Xu, Huafeng, Aaron G Schmidt, Timothy O'Donnell, Matthew D Therkelsen, Thomas B Kepler, M Anthony Moody, Barton F Haynes, Hua-Xin Liao, Stephen C Harrison, and David E Shaw. 2014. “Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage.” Proteins 83 (4): 771-780. doi:10.1002/prot.24745. http://dx.doi.org/10.1002/prot.24745.
Full Text & Related Files:
Abstract: Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B-cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen-binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single-site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies. Proteins 2014; 83:771–780. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Published Version: doi:10.1002/prot.24745
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368477/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:15034766
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters