Dissociated multimodal hubs and seizures in temporal lobe epilepsy

DSpace/Manakin Repository

Dissociated multimodal hubs and seizures in temporal lobe epilepsy

Citable link to this page

 

 
Title: Dissociated multimodal hubs and seizures in temporal lobe epilepsy
Author: Douw, Linda; DeSalvo, Matthew N; Tanaka, Naoaki; Cole, Andrew J; Liu, Hesheng; Reinsberger, Claus; Stufflebeam, Steven M

Note: Order does not necessarily reflect citation order of authors.

Citation: Douw, Linda, Matthew N DeSalvo, Naoaki Tanaka, Andrew J Cole, Hesheng Liu, Claus Reinsberger, and Steven M Stufflebeam. 2015. “Dissociated multimodal hubs and seizures in temporal lobe epilepsy.” Annals of Clinical and Translational Neurology 2 (4): 338-352. doi:10.1002/acn3.173. http://dx.doi.org/10.1002/acn3.173.
Full Text & Related Files:
Abstract: Objective: Brain connectivity at rest is altered in temporal lobe epilepsy (TLE), particularly in “hub” areas such as the posterior default mode network (DMN). Although both functional and anatomical connectivity are disturbed in TLE, the relationships between measures as well as to seizure frequency remain unclear. We aim to clarify these associations using connectivity measures specifically sensitive to hubs. Methods: Connectivity between 1000 cortical surface parcels was determined in 49 TLE patients and 23 controls with diffusion and resting-state functional magnetic resonance imaging. Two types of hub connectivity were investigated across multiple brain modules (the DMN, motor system, etcetera): (1) within-module connectivity (a measure of local importance that assesses a parcel's communication level within its own subnetwork) and (2) between-module connectivity (a measure that assesses connections across multiple modules). Results: In TLE patients, there was lower overall functional integrity of the DMN as well as an increase in posterior hub connections with other modules. Anatomical between-module connectivity was globally decreased. Higher DMN disintegration (DD) coincided with higher anatomical between-module connectivity, whereas both were associated with increased seizure frequency. DD related to seizure frequency through mediating effects of anatomical connectivity, but seizure frequency also correlated with anatomical connectivity through DD, indicating a complex interaction between multimodal networks and symptoms. Interpretation We provide evidence for dissociated anatomical and functional hub connectivity in TLE. Moreover, shifts in functional hub connections from within to outside the DMN, an overall loss of integrative anatomical communication, and the interaction between the two increase seizure frequency.
Published Version: doi:10.1002/acn3.173
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402080/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:15035071
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters