Show simple item record

dc.contributor.authorDouw, Lindaen_US
dc.contributor.authorDeSalvo, Matthew Nen_US
dc.contributor.authorTanaka, Naoakien_US
dc.contributor.authorCole, Andrew Jen_US
dc.contributor.authorLiu, Heshengen_US
dc.contributor.authorReinsberger, Clausen_US
dc.contributor.authorStufflebeam, Steven Men_US
dc.date.accessioned2015-05-04T15:28:11Z
dc.date.issued2015en_US
dc.identifier.citationDouw, Linda, Matthew N DeSalvo, Naoaki Tanaka, Andrew J Cole, Hesheng Liu, Claus Reinsberger, and Steven M Stufflebeam. 2015. “Dissociated multimodal hubs and seizures in temporal lobe epilepsy.” Annals of Clinical and Translational Neurology 2 (4): 338-352. doi:10.1002/acn3.173. http://dx.doi.org/10.1002/acn3.173.en
dc.identifier.issn2328-9503en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:15035071
dc.description.abstractObjective: Brain connectivity at rest is altered in temporal lobe epilepsy (TLE), particularly in “hub” areas such as the posterior default mode network (DMN). Although both functional and anatomical connectivity are disturbed in TLE, the relationships between measures as well as to seizure frequency remain unclear. We aim to clarify these associations using connectivity measures specifically sensitive to hubs. Methods: Connectivity between 1000 cortical surface parcels was determined in 49 TLE patients and 23 controls with diffusion and resting-state functional magnetic resonance imaging. Two types of hub connectivity were investigated across multiple brain modules (the DMN, motor system, etcetera): (1) within-module connectivity (a measure of local importance that assesses a parcel's communication level within its own subnetwork) and (2) between-module connectivity (a measure that assesses connections across multiple modules). Results: In TLE patients, there was lower overall functional integrity of the DMN as well as an increase in posterior hub connections with other modules. Anatomical between-module connectivity was globally decreased. Higher DMN disintegration (DD) coincided with higher anatomical between-module connectivity, whereas both were associated with increased seizure frequency. DD related to seizure frequency through mediating effects of anatomical connectivity, but seizure frequency also correlated with anatomical connectivity through DD, indicating a complex interaction between multimodal networks and symptoms. Interpretation We provide evidence for dissociated anatomical and functional hub connectivity in TLE. Moreover, shifts in functional hub connections from within to outside the DMN, an overall loss of integrative anatomical communication, and the interaction between the two increase seizure frequency.en
dc.language.isoen_USen
dc.publisherBlackWell Publishing Ltden
dc.relation.isversionofdoi:10.1002/acn3.173en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402080/pdf/en
dash.licenseLAAen_US
dc.titleDissociated multimodal hubs and seizures in temporal lobe epilepsyen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalAnnals of Clinical and Translational Neurologyen
dash.depositing.authorDeSalvo, Matthew Nen_US
dc.date.available2015-05-04T15:28:11Z
dc.identifier.doi10.1002/acn3.173*
dash.contributor.affiliatedDesalvo, Matthew
dash.contributor.affiliatedReinsberger, Claus
dash.contributor.affiliatedStufflebeam, Steven
dash.contributor.affiliatedCole, Andrew
dash.contributor.affiliatedTanaka, Naoaki
dash.contributor.affiliatedLiu, Hesheng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record