Show simple item record

dc.contributor.authorNemiroski, Alex
dc.contributor.authorGonidec, Mathieu
dc.contributor.authorFox, Jerome Michael
dc.contributor.authorJean-Remy, Philip
dc.contributor.authorTurnage, Evan
dc.contributor.authorWhitesides, George McClelland
dc.date.accessioned2015-06-29T20:23:31Z
dc.date.issued2014
dc.identifier.citationNemiroski, Alex, Mathieu Gonidec, Jerome M. Fox, Philip Jean-Remy, Evan Turnage, and George M. Whitesides. 2014. “Engineering Shadows to Fabricate Optical Metasurfaces.” ACS Nano 8 (11) (November 25): 11061–11070. doi:10.1021/nn504214b.en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:16883004
dc.description.abstractOptical metasurfaces—patterned arrays of plasmonic nanoantennas that enable the precise manipulation of light–matter interactions—are emerging as critical components in many nanophotonic materials, including planar metamaterials, chemical and biological sensors, and photovoltaics. The development of these materials has been slowed by the difficulty of efficiently fabricating patterns with the required combinations of intricate nanoscale structure, high areal density, and/or heterogeneous composition. One convenient strategy that enables parallel fabrication of periodic nanopatterns uses self-assembled colloidal monolayers as shadow masks; this method has, however, not been extended beyond a small set of simple patterns and, thus, has remained incompatible with the broad design requirements of metasurfaces. This paper demonstrates a technique—shadow-sphere lithography (SSL)—that uses sequential deposition from multiple angles through plasma-etched microspheres to expand the variety and complexity of structures accessible by colloidal masks. SSL harnesses the entire, relatively unexplored, space of shadow-derived shapes and—with custom software to guide multiangled deposition—contains sufficient degrees of freedom to (i) design and fabricate a wide variety of metasurfaces that incorporate complex structures with small feature sizes and multiple materials and (ii) generate, in parallel, thousands of variations of structures for high-throughput screening of new patterns that may yield unexpected optical spectra. This generalized approach to engineering shadows of spheres provides a new strategy for efficient prototyping and discovery of periodic metasurfaces.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofdoi:10.1021/nn504214ben_US
dash.licenseOAP
dc.subjectnanophotonicsen_US
dc.subjectmetasurfacesen_US
dc.subjectnanoantennasen_US
dc.subjectplasmonicsen_US
dc.subjectnanofabricationen_US
dc.subjectnanosphere lithographyen_US
dc.subjectcolloidal lithographyen_US
dc.subjectshadow-sphere lithographyen_US
dc.titleEngineering Shadows to Fabricate Optical Metasurfacesen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalACS Nanoen_US
dash.depositing.authorWhitesides, George McClelland
dc.date.available2015-06-29T20:23:31Z
dc.identifier.doi10.1021/nn504214b*
workflow.legacycommentsFAR 2014en_US
dash.contributor.affiliatedGonidec, Mathieu
dash.contributor.affiliatedFox, Jerome Michael
dash.contributor.affiliatedNemiroski, Alex
dash.contributor.affiliatedWhitesides, George


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record