Show simple item record

dc.contributor.authorHernandez-Nunez, Luisen_US
dc.contributor.authorBelina, Jonasen_US
dc.contributor.authorKlein, Masonen_US
dc.contributor.authorSi, Guangweien_US
dc.contributor.authorClaus, Lindseyen_US
dc.contributor.authorCarlson, John Ren_US
dc.contributor.authorSamuel, Aravinthan DTen_US
dc.date.accessioned2015-07-13T18:45:53Z
dc.date.issued2015en_US
dc.identifier.citationHernandez-Nunez, Luis, Jonas Belina, Mason Klein, Guangwei Si, Lindsey Claus, John R Carlson, and Aravinthan DT Samuel. 2015. “Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics.” eLife 4 (1): e06225. doi:10.7554/eLife.06225. http://dx.doi.org/10.7554/eLife.06225.en
dc.identifier.issn2050-084Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:17295595
dc.description.abstractNeural circuits for behavior transform sensory inputs into motor outputs in patterns with strategic value. Determining how neurons along a sensorimotor circuit contribute to this transformation is central to understanding behavior. To do this, a quantitative framework to describe behavioral dynamics is needed. In this study, we built a high-throughput optogenetic system for Drosophila larva to quantify the sensorimotor transformations underlying navigational behavior. We express CsChrimson, a red-shifted variant of channelrhodopsin, in specific chemosensory neurons and expose large numbers of freely moving animals to random optogenetic activation patterns. We quantify their behavioral responses and use reverse-correlation analysis to uncover the linear and static nonlinear components of navigation dynamics as functions of optogenetic activation patterns of specific sensory neurons. We find that linear–nonlinear models accurately predict navigational decision-making for different optogenetic activation waveforms. We use our method to establish the valence and dynamics of navigation driven by optogenetic activation of different combinations of bitter-sensing gustatory neurons. Our method captures the dynamics of optogenetically induced behavior in compact, quantitative transformations that can be used to characterize circuits for sensorimotor processing and their contribution to navigational decision making. DOI: http://dx.doi.org/10.7554/eLife.06225.001en
dc.language.isoen_USen
dc.publishereLife Sciences Publications, Ltden
dc.relation.isversionofdoi:10.7554/eLife.06225en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466337/pdf/en
dash.licenseLAAen_US
dc.subjectoptogeneticsen
dc.subjectchemotaxisen
dc.subjectolfactionen
dc.subjectgustationen
dc.subjecten
dc.titleReverse-correlation analysis of navigation dynamics in Drosophila larva using optogeneticsen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journaleLifeen
dash.depositing.authorKlein, Masonen_US
dc.date.available2015-07-13T18:45:53Z
dc.identifier.doi10.7554/eLife.06225*
dash.contributor.affiliatedClaus, Lindsey
dash.contributor.affiliatedSi, Guangwei
dash.contributor.affiliatedKlein, Mason
dash.contributor.affiliatedSamuel, Aravi


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record