Show simple item record

dc.contributor.authorGrosberg, Anna
dc.contributor.authorKuo, Po-Ling
dc.contributor.authorGuo, Chin-Lin
dc.contributor.authorGeisse, Nicholas A.
dc.contributor.authorBray, Mark-Anthony
dc.contributor.authorAdams, William J.
dc.contributor.authorSheehy, Sean Paul
dc.contributor.authorParker, Kevin Kit
dc.date.accessioned2015-08-10T16:52:45Z
dc.date.issued2011
dc.identifier.citationGrosberg, Anna, Po-Ling Kuo, Chin-Lin Guo, Nicholas A. Geisse, Mark-Anthony Bray, William J. Adams, Sean P. Sheehy, and Kevin Kit Parker. 2011. “Self-Organization of Muscle Cell Structure and Function.” Edited by Edmund J. Crampin. PLoS Computational Biology 7 (2) (February 24): e1001088. doi:10.1371/journal.pcbi.1001088.en_US
dc.identifier.issn1553-7358en_US
dc.identifier.issn1553-734Xen_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:17985219
dc.description.abstractThe organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionofdoi:10.1371/journal.pcbi.1001088en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pubmed/21390276en_US
dash.licenseLAA
dc.subjectActinsen_US
dc.subjectClassical mechanicsen_US
dc.subjectCytoskeletonen_US
dc.subjectIntegrinsen_US
dc.subjectMuscle cellen_US
dc.subjectMuscle contractionen_US
dc.subjectMyofibrilsen_US
dc.subjectSymmetryen_US
dc.titleSelf-Organization of Muscle Cell Structure and Functionen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS Computational Biologyen_US
dash.depositing.authorParker, Kevin Kit
dc.date.available2015-08-10T16:52:45Z
dc.identifier.doi10.1371/journal.pcbi.1001088*
dash.contributor.affiliatedSheehy, Sean Paul
dash.contributor.affiliatedParker, Kevin


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record