Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models

View/ Open
Published Version
https://doi.org/10.1371/journal.pcbi.1004182Metadata
Show full item recordCitation
Stein, Richard R., Debora S. Marks, and Chris Sander. 2015. “Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.” PLoS Computational Biology 11 (7): e1004182. doi:10.1371/journal.pcbi.1004182. http://dx.doi.org/10.1371/journal.pcbi.1004182.Abstract
Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene–gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520494/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462137
Collections
- HMS Scholarly Articles [17714]
Contact administrator regarding this item (to report mistakes or request changes)