Show simple item record

dc.contributor.authorSantos-Martinez, Maria Jen_US
dc.contributor.authorTomaszewski, Krzysztof Aen_US
dc.contributor.authorMedina, Carlosen_US
dc.contributor.authorBazou, Despinaen_US
dc.contributor.authorGilmer, John Fen_US
dc.contributor.authorRadomski, Marek Wen_US
dc.date.accessioned2015-09-01T13:28:14Z
dc.date.issued2015en_US
dc.identifier.citationSantos-Martinez, Maria J, Krzysztof A Tomaszewski, Carlos Medina, Despina Bazou, John F Gilmer, and Marek W Radomski. 2015. “Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry.” International Journal of Nanomedicine 10 (1): 5107-5119. doi:10.2147/IJN.S84305. http://dx.doi.org/10.2147/IJN.S84305.en
dc.identifier.issn1176-9114en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:21462226
dc.description.abstractBackground: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. Methods: Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. Results: Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. Conclusion: NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A2-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for studying NP-induced microaggregation.en
dc.language.isoen_USen
dc.publisherDove Medical Pressen
dc.relation.isversionofdoi:10.2147/IJN.S84305en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540170/pdf/en
dash.licenseLAAen_US
dc.subjectplatelet microaggregationen
dc.subjectquartz crystal microbalance with dissipationen
dc.subjectpharmacologyen
dc.subjectnanoparticlesen
dc.titlePharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometryen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalInternational Journal of Nanomedicineen
dash.depositing.authorBazou, Despinaen_US
dc.date.available2015-09-01T13:28:14Z
dc.identifier.doi10.2147/IJN.S84305*
dash.contributor.affiliatedBazou, Despina


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record