Spreading Effect of tDCS in Individuals with Attention-Deficit/Hyperactivity Disorder as Shown by Functional Cortical Networks: A Randomized, Double-Blind, Sham-Controlled Trial

DSpace/Manakin Repository

Spreading Effect of tDCS in Individuals with Attention-Deficit/Hyperactivity Disorder as Shown by Functional Cortical Networks: A Randomized, Double-Blind, Sham-Controlled Trial

Citable link to this page

 

 
Title: Spreading Effect of tDCS in Individuals with Attention-Deficit/Hyperactivity Disorder as Shown by Functional Cortical Networks: A Randomized, Double-Blind, Sham-Controlled Trial
Author: Cosmo, Camila; Ferreira, Cândida; Miranda, José Garcia Vivas; do Rosário, Raphael Silva; Baptista, Abrahão Fontes; Montoya, Pedro; de Sena, Eduardo Pondé

Note: Order does not necessarily reflect citation order of authors.

Citation: Cosmo, Camila, Cândida Ferreira, José Garcia Vivas Miranda, Raphael Silva do Rosário, Abrahão Fontes Baptista, Pedro Montoya, and Eduardo Pondé de Sena. 2015. “Spreading Effect of tDCS in Individuals with Attention-Deficit/Hyperactivity Disorder as Shown by Functional Cortical Networks: A Randomized, Double-Blind, Sham-Controlled Trial.” Frontiers in Psychiatry 6 (1): 111. doi:10.3389/fpsyt.2015.00111. http://dx.doi.org/10.3389/fpsyt.2015.00111.
Full Text & Related Files:
Abstract: Background: Transcranial direct current stimulation (tDCS) is known to modulate spontaneous neural network excitability. The cognitive improvement observed in previous trials raises the potential of this technique as a possible therapeutic tool for use in attention-deficit/hyperactivity disorder (ADHD) population. However, to explore the potential of this technique as a treatment approach, the functional parameters of brain connectivity and the extent of its effects need to be more fully investigated. Objective: The aim of this study was to investigate a functional cortical network (FCN) model based on electroencephalographic activity for studying the dynamic patterns of brain connectivity modulated by tDCS and the distribution of its effects in individuals with ADHD. Methods: Sixty ADHD patients participated in a parallel, randomized, double-blind, sham-controlled trial. Individuals underwent a single session of sham or anodal tDCS at 1 mA of current intensity over the left dorsolateral prefrontal cortex for 20 min. The acute effects of stimulation on brain connectivity were assessed using the FCN model based on electroencephalography activity. Results: Comparing the weighted node degree within groups prior to and following the intervention, a statistically significant difference was found in the electrodes located on the target and correlated areas in the active group (p < 0.05), while no statistically significant results were found in the sham group (p ≥ 0.05; paired-sample Wilcoxon signed-rank test). Conclusion: Anodal tDCS increased functional brain connectivity in individuals with ADHD compared to data recorded in the baseline resting state. In addition, although some studies have suggested that the effects of tDCS are selective, the present findings show that its modulatory activity spreads. Further studies need to be performed to investigate the dynamic patterns and physiological mechanisms underlying the modulatory effects of tDCS. Trial Registration ClinicalTrials.gov NCT01968512.
Published Version: doi:10.3389/fpsyt.2015.00111
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524049/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462353
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters