Show simple item record

dc.contributor.authorCui, Xu
dc.contributor.authorLee, Gwan-Hyoung
dc.contributor.authorKim, Young Duck
dc.contributor.authorArefe, Ghidewon
dc.contributor.authorHuang, Pinshane Y.
dc.contributor.authorLee, Chul-Ho
dc.contributor.authorChenet, Daniel A.
dc.contributor.authorZhang, Xiangwei
dc.contributor.authorWang, Lei
dc.contributor.authorYe, Fan
dc.contributor.authorPizzocchero, Filippo
dc.contributor.authorJessen, Bjarke S.
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorMuller, David A.
dc.contributor.authorLow, Tony
dc.contributor.authorKim, Philip
dc.contributor.authorHone, James
dc.date.accessioned2015-09-14T19:05:29Z
dash.embargo.terms2015-10-28
dc.date.issued2015
dc.identifier.citationCui, Xu, Gwan-Hyoung Lee, Young Duck Kim, Ghidewon Arefe, Pinshane Y. Huang, Chul-Ho Lee, Daniel A. Chenet, et al. 2015. “Multi-Terminal Transport Measurements of MoS2 Using a van Der Waals Heterostructure Device Platform.” Nature Nanotechnology 10 (6) (April 27): 534–540. doi:10.1038/nnano.2015.70.en_US
dc.identifier.issn1748-3387en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:22557383
dc.description.abstractAtomically thin two-dimensional semiconductors such as MoS2 hold great promise in electrical, optical, and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include both defects such as sulfur vacancies in the MoS2 itself, and extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, here we developed a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride, and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm2/Vs for 6-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations for the first time in high-mobility monolayer and few-layer MoS2. Modeling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-ranged and long-ranged interfacial scattering limits low-temperature mobility of MoS2.en_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofdoi:10.1038/nnano.2015.70en_US
dc.relation.hasversionhttp://arxiv.org/pdf/1412.5977.pdfen_US
dash.licenseLAA
dc.titleMulti-terminal transport measurements of MoS2 using a van der Waals heterostructure device platformen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalNature Nanotechen_US
dash.depositing.authorKim, Philip
dash.waiver2015-02-26
dc.date.available2015-10-28T07:30:34Z
dc.identifier.doi10.1038/nnano.2015.70*
workflow.legacycommentsWaiver Tableen_US
dash.authorsorderedfalse
dash.contributor.affiliatedZhang, Xiangwei
dash.contributor.affiliatedWang, Lei
dash.contributor.affiliatedKim, Philip


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record