Functional connectivity of visual cortex in the blind follows retinotopic organization principles

DSpace/Manakin Repository

Functional connectivity of visual cortex in the blind follows retinotopic organization principles

Citable link to this page

 

 
Title: Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Author: Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno; Amedi, Amir

Note: Order does not necessarily reflect citation order of authors.

Citation: Striem-Amit, Ella, Smadar Ovadia-Caro, Alfonso Caramazza, Daniel S. Margulies, Arno Villringer, and Amir Amedi. 2015. “Functional connectivity of visual cortex in the blind follows retinotopic organization principles.” Brain 138 (6): 1679-1695. doi:10.1093/brain/awv083. http://dx.doi.org/10.1093/brain/awv083.
Full Text & Related Files:
Abstract: Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind.
Published Version: doi:10.1093/brain/awv083
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614142/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:23473844
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters