Show simple item record

dc.contributor.authorBurstein, Royen_US
dc.contributor.authorFleming, Tomen_US
dc.contributor.authorHaagsma, Juanitaen_US
dc.contributor.authorSalomon, Joshua A.en_US
dc.contributor.authorVos, Theoen_US
dc.contributor.authorMurray, Christopher JL.en_US
dc.date.accessioned2015-12-04T18:14:40Z
dc.date.issued2015en_US
dc.identifier.citationBurstein, Roy, Tom Fleming, Juanita Haagsma, Joshua A. Salomon, Theo Vos, and Christopher JL. Murray. 2015. “Estimating distributions of health state severity for the global burden of disease study.” Population Health Metrics 13 (1): 31. doi:10.1186/s12963-015-0064-y. http://dx.doi.org/10.1186/s12963-015-0064-y.en
dc.identifier.issn1478-7954en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:23845309
dc.description.abstractBackground: Many major causes of disability in the Global Burden of Disease (GBD) study present with a range of severity, and for most causes finding population distributions of severity can be difficult due to issues of sparse data, inconsistent measurement, and need to account for comorbidities. We developed an indirect approach to obtain severity distributions empirically from survey data. Methods: Individual-level data were used from three large population surveys from the US and Australia that included self-reported prevalence of major diseases and injuries as well as generic health status assessments using the 12-Item Short Form Health Survey (SF-12). We developed a mapping function from SF-12 scores to GBD disability weights. Mapped scores for each individual respondent were regressed against the reported diseases and injuries using a mixed-effects model with a logit-transformed response variable. The regression outputs were used to predict comorbidity-corrected health-state weights for the group of individuals with each condition. The distribution of these comorbidity-corrected weights were used to estimate the fraction of individuals with each condition falling into different GBD severity categories, including asymptomatic (implying disability weight of zero). Results: After correcting for comorbid conditions, all causes analyzed had some proportion of the population in the asymptomatic category. For less severe conditions, such as alopecia areata, we estimated that 44.1 % [95 % CI: 38.7 %-49.4 %] were asymptomatic while 28.3 % [26.8 %-29.6 %] of anxiety disorders had asymptomatic cases. For 152 conditions, full distributions of severity were estimated. For anxiety disorders for example, we estimated the mean population proportions in the mild, moderate, and severe states to be 40.9 %, 18.5 %, and 12.3 % respectively. Thirty-seven of the analyzed conditions were used in the GBD 2013 estimates and are reported here. Conclusion: There is large heterogeneity in the disabling severity of conditions among individuals. The GBD 2013 approach allows explicit accounting for this heterogeneity in GBD estimates. Existing survey data that have collected health status together with information on the presence of a series of comorbid conditions can be used to fill critical gaps in the information on condition severity while correcting for effects of comorbidity. Our ability to make these estimates may be limited by lack of geographic variation in the data and by the current methodology for disability weights, which implies that severity must be binned rather than expressed in as a full distribution. Future country-specific data collection efforts will be needed to advance this research. Electronic supplementary material The online version of this article (doi:10.1186/s12963-015-0064-y) contains supplementary material, which is available to authorized users.en
dc.language.isoen_USen
dc.publisherBioMed Centralen
dc.relation.isversionofdoi:10.1186/s12963-015-0064-yen
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650517/pdf/en
dash.licenseLAAen_US
dc.subjectGlobal burden of diseaseen
dc.subjectNon-fatal outcomesen
dc.subjectMedical expenditures panel survey (MEPS)en
dc.subjectFunctional health statusen
dc.subjectDisability weightsen
dc.subject12-item short form health survey (SF-12)en
dc.titleEstimating distributions of health state severity for the global burden of disease studyen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalPopulation Health Metricsen
dash.depositing.authorSalomon, Joshua A.en_US
dc.date.available2015-12-04T18:14:40Z
dc.identifier.doi10.1186/s12963-015-0064-y*
dash.contributor.affiliatedSalomon, Joshua
dc.identifier.orcid0000-0003-3929-5515


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record