Show simple item record

dc.contributor.advisorBrugge, Joanen_US
dc.contributor.advisorPolyak, Korneliaen_US
dc.contributor.authorSubedee, Ashimen_US
dc.date.accessioned2015-12-04T18:41:24Z
dash.embargo.terms2017-11-01en_US
dc.date.created2015-11en_US
dc.date.issued2015-08-07en_US
dc.date.submitted2015en_US
dc.identifier.citationSubedee, Ashim. 2015. Molecular Determinants and Transcriptional Regulators in Triple Negative Breast Cancer. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:23845415
dc.description.abstractBreast cancer is a highly heterogeneous disease with differences in histopathological and biological characteristics, variable prognoses, and response to therapy. Clinically, breast tumors are classified based on the expression of hormone receptors (ER and PR) and HER2 as hormone receptor positive (ER+, PR+), HER2+, and triple negative (ER-, PR-, HER2-). Based on gene expression profiling, breast cancers have been classified into luminal (luminal A and B), HER2+, basal-like and claudin-low subtypes. Knowledge of the molecular properties of luminal and HER2+ subtypes has led to the development of endocrine and HER2-targeted therapies. However, the molecular determinants and transcriptional regulators of basal-like tumors that constitute the majority of triple negative breast cancer (TNBC) are poorly understood. In this dissertation, we have defined some of the molecular characteristics of the basal-like breast cancer phenotype and also identified multiple transcriptional regulators specific to TNBCs. By using three different reprogramming approaches – somatic cell fusion, nuclear reprogramming, and transcription factor transduction, we showed that the basal-like breast cancer phenotype is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. We found that luminal breast cancers share a common core epigenetic program, whereas basal-like breast cancers are highly heterogeneous. We demonstrated that protein extracts of basal-like breast cancer cells can reprogram a subset of luminal breast cancer cells to a basal-like state. Additionally, we identified three transcription factors, EN1, TBX18, and TCF4, the overexpression of which induced the repression of some luminal features in luminal breast cancer cells. We also performed a targeted cellular viability screen for selected transcription factors differentially expressed between triple negative and other breast cancer subtypes and identified multiple factors essential for TNBCs including EN1 and TRIP13. We found that downregulation of EN1 and TRIP13 preferentially and significantly reduce cellular viability, colony formation, and in vivo tumorigenicity of TNBC cell lines. We demonstrated that downregulation of EN1 induces an arrest in the G1 phase of the cell cycle and apoptosis. By analyzing the gene expression and histone H3 lysine 27 acetylation (H3K27ac) profiles of TNBC cell lines following downregulation of EN1, we found that EN1 regulates genes involved in angiogenesis, neurogenesis, cell matrix interactions, and WNT signaling pathways. We also performed ChIP-seq for exogenously expressed HA-tagged EN1 to identify its genomic targets. Lastly, we showed that the expression of EN1 correlates with shorter overall survival among patients with basal-like breast tumors. Similarly, by analyzing the gene expression profiles of TNBC cell lines following downregulation of TRIP13, we found that TRIP13 regulates genes involved in IL6 signaling, cell proliferation, and angiogenesis; in line with this we confirmed reduced levels of JAK2 and phospho-STAT3 following TRIP13 downregulation. In summary, we have unraveled some of the molecular mechanisms of basal-like and luminal breast cancer cell phenotypes and identified factors that might repress luminal differentiation programs in basal-like breast tumors. We have also identified multiple triple negative breast cancer specific transcription regulators. We believe these studies have increased our molecular understanding of basal-like and triple negative breast cancers and have provided potential therapeutic targets for these breast tumors.en_US
dc.description.sponsorshipMedical Sciencesen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dash.licenseLAAen_US
dc.subjectBiology, Geneticsen_US
dc.subjectBiology, Cellen_US
dc.subjectBiology, Molecularen_US
dc.titleMolecular Determinants and Transcriptional Regulators in Triple Negative Breast Canceren_US
dc.typeThesis or Dissertationen_US
dash.depositing.authorSubedee, Ashimen_US
dc.date.available2017-11-01T07:30:44Z
thesis.degree.date2015en_US
thesis.degree.grantorGraduate School of Arts & Sciencesen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
dc.contributor.committeeMemberBrown, Mylesen_US
dc.contributor.committeeMemberMeissner, Alexen_US
dc.type.materialtexten_US
thesis.degree.departmentMedical Sciencesen_US
dash.identifier.vireohttp://etds.lib.harvard.edu/gsas/admin/view/580en_US
dc.description.keywordsbreast canceren_US
dash.author.emailasubedee@gmail.comen_US
dash.identifier.drsurn-3:HUL.DRS.OBJECT:25142585en_US
dash.identifier.orcid0000-0002-1208-5182en_US
dash.contributor.affiliatedSubedee, Ashim
dc.identifier.orcid0000-0002-1208-5182


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record