C/o and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion

DSpace/Manakin Repository

C/o and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion

Citable link to this page

 

 
Title: C/o and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion
Author: Piso, Ana-Maria Adriana; Oberg, Karin; Birnstiel, Tilman David; Murray-Clay, Ruth Ann

Note: Order does not necessarily reflect citation order of authors.

Citation: Piso, Ana-Maria A., Karin I. Öberg, Tilman Birnstiel, and Ruth A. Murray-Clay. 2015. “C/o and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion” The Astrophysical Journal 815 (2) (December 15): 109. doi:10.1088/0004-637x/815/2/109.
Full Text & Related Files:
Abstract: The C/O ratio is a defining feature of both gas giant atmospheric and protoplanetary disk chemistry.
In disks, the C/O ratio is regulated by the presence of snowlines of major volatiles at different distances from the central star. We explore the effect of radial drift of solids and viscous gas accretion onto the central star on the snowline locations of the main C and O carriers in a protoplanetary disk, H2O, CO2 and CO, and their consequences for the C/O ratio in gas and dust throughout the disk. We
determine the snowline locations for a range of fixed initial particle sizes and disk types. For our
fiducial disk model, we find that grains with sizes ∼0.5 cm . s . 7 m for an irradiated disk, and
∼0.001 cm . s . 7 m for an evolving and viscous disk, desorb at a size-dependent location in the
disk, which is independent of the particle’s initial position. The snowline radius decreases for larger
particles, up to sizes of ∼7 m. Compared to a static disk, we find that radial drift and gas accretion
in a viscous disk move the H2O snowline inwards by up to 40 %, the CO2 snowline by up to 60 %,
and the CO snowline by up to 50 %. We thus determine an inner limit on the snowline locations when
radial drift and gas accretion are accounted for.
Published Version: doi:10.1088/0004-637x/815/2/109
Other Sources: http://arxiv.org/pdf/1511.05563v1.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:24820078
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters