Ensemble Learning for Reectometry

View/ Open
Metadata
Show full item recordCitation
Romeiro, Fabiano and Todd Zickler. 2010. Ensemble Learning for Reectometry. Harvard Computer Science Group Technical Report TR-06-10.Abstract
In “Blind Reflectometry” (Romeiro and Zickler, 2010 [3]) we describe a variational Bayesian approach to inferring material properties (BRDF) from a single image of a known shape under unknown, real-world illumination. This technical report provides additional details of that approach. First, we detail the prior probability distribution for natural lighting environments. Second, we provide a derivation of the bilinear likelihood expression that is based on discretizing the rendering equation. Third and finally, we provide the update equations for the iterative algorithm that computes an approximation to the posterior distribution of BRDFs.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829597
Collections
- FAS Scholarly Articles [18056]
Contact administrator regarding this item (to report mistakes or request changes)