Show simple item record

dc.contributor.authorChristodouleas, Dionysios
dc.contributor.authorNemiroski, Alex
dc.contributor.authorKumar, Ashok Ashwin
dc.contributor.authorWhitesides, George McClelland
dc.date.accessioned2016-01-26T20:45:20Z
dc.date.issued2015
dc.identifierQuick submit: 2015-12-22T11:46:39-05:00
dc.identifier.citationChristodouleas, Dionysios C., Alex Nemiroski, Ashok A. Kumar, and George M. Whitesides. 2015. “Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry.” Anal. Chem. 87 (18) (September 15): 9170–9178. doi:10.1021/acs.analchem.5b01612.en_US
dc.identifier.issn0003-2700en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:24902729
dc.description.abstractThis paper demonstrates that, for applications in resource-limited environments, expensive microplate spectrophotometers that are used in many central laboratories for parallel measurement of absorbance of samples can be replaced by photometers based on inexpensive and ubiquitous, consumer electronic devices (e.g., scanners and cell-phone cameras). Two devices, (i) a flatbed scanner operating in transmittance mode and (ii) a camera-based photometer (constructed from a cell phone camera, a planar light source, and a cardboard box), demonstrate the concept. These devices illuminate samples in microtiter plates from one side and use the RGB-based imaging sensors of the scanner/camera to measure the light transmitted to the other side. The broadband absorbance of samples (RGB-resolved absorbance) can be calculated using the RGB color values of only three pixels per microwell. Rigorous theoretical analysis establishes a well-defined relationship between the absorbance spectrum of a sample and its corresponding RGB-resolved absorbance. The linearity and precision of measurements performed with these low-cost photometers on different dyes, which absorb across the range of the visible spectrum, and chromogenic products of assays (e.g., enzymatic, ELISA) demonstrate that these low-cost photometers can be used reliably in a broad range of chemical and biochemical analyses. The ability to perform accurate measurements of absorbance on liquid samples, in parallel and at low cost, would enable testing, typically reserved for well-equipped clinics and laboratories, to be performed in circumstances where resources and expertise are limited.en_US
dc.description.sponsorshipChemistry and Chemical Biologyen_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofdoi:10.1021/acs.analchem.5b01612en_US
dash.licenseOAP
dc.titleBroadly Available Imaging Devices Enable High-Quality Low-Cost Photometryen_US
dc.typeJournal Articleen_US
dc.date.updated2015-12-22T16:46:41Z
dc.description.versionAccepted Manuscripten_US
dc.rights.holderChristodouleas, D. C; Nemiroski, A; Kumar, A, A; Whitesides, G. M
dc.relation.journalAnalytical Chemistryen_US
dash.depositing.authorWhitesides, George McClelland
dc.date.available2016-01-26T20:45:20Z
dc.identifier.doi10.1021/acs.analchem.5b01612*
dash.contributor.affiliatedNemiroski, Alex
dash.contributor.affiliatedChristodouleas, Dionysios
dash.contributor.affiliatedKumar, Ashok Ashwin
dash.contributor.affiliatedWhitesides, George
dc.identifier.orcid0000-0001-9451-2442


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record