Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences

DSpace/Manakin Repository

Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences

Citable link to this page

 

 
Title: Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences
Author: Mahiti, Macdonald; Toyoda, Mako; Jia, Xiaofei; Kuang, Xiaomei T.; Mwimanzi, Francis; Mwimanzi, Philip; Walker, Bruce D.; Xiong, Yong; Brumme, Zabrina L.; Brockman, Mark A.; Ueno, Takamasa

Note: Order does not necessarily reflect citation order of authors.

Citation: Mahiti, M., M. Toyoda, X. Jia, X. T. Kuang, F. Mwimanzi, P. Mwimanzi, B. D. Walker, et al. 2016. “Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences.” mBio 7 (1): e01516-15. doi:10.1128/mBio.01516-15. http://dx.doi.org/10.1128/mBio.01516-15.
Full Text & Related Files:
Abstract: ABSTRACT HIV-1 Nef binds to the cytoplasmic region of HLA-A and HLA-B and downregulates these molecules from the surface of virus-infected cells, thus evading immune detection by CD8+ T cells. Polymorphic residues within the HLA cytoplasmic region may affect Nef’s downregulation activity. However, the effects of HLA polymorphisms on recognition by primary Nef isolates remain elusive, as do the specific Nef regions responsible for downregulation of HLA-A versus HLA-B. Here, we examined 46 Nef clones isolated from chronically HIV-1 subtype B-infected subjects for their ability to downregulate various HLA-A, HLA-B, and HLA-C molecules on the surface of virus-infected cells. Overall, HLA-B exhibited greater resistance to Nef-mediated downregulation than HLA-A, regardless of the cell type examined. As expected, no Nef clone downregulated HLA-C. Importantly, the differential abilities of patient-derived Nef clones to downregulate HLA-A and HLA-B correlated inversely with the sensitivities of HIV-infected target cells to recognition by effector cells expressing an HIV-1 Gag-specific T cell receptor. Nef codon function analysis implicated amino acid variation at position 202 (Nef-202) in differentially affecting the ability to downregulate HLA-A and HLA-B, an observation that was subsequently confirmed by experiments using Nef mutants constructed by site-directed mutagenesis. The in silico and mutagenesis analyses further suggested that Nef-202 may interact with the C-terminal Cys-Lys-Val residues of HLA-A, which are absent in HLA-B. Taken together, the results show that natural polymorphisms within Nef modulate its interaction with natural polymorphisms in the HLA cytoplasmic tails, thereby affecting the efficiency of HLA downregulation and consequent recognition by HIV-specific T cells. These results thus extend our understanding of this complex pathway of retroviral immune evasion.
Published Version: doi:10.1128/mBio.01516-15
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724998/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:24984066
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters