Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure

DSpace/Manakin Repository

Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure

Citable link to this page

 

 
Title: Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure
Author: Grad, Yonatan Hagai; Newman, Richard A.; Zody, M; Yang, Xiao; Murphy, Rebecca A.; Qu, J.; Malboeuf, C. M.; Levin, J. Z.; Lipsitch, Marc; DeVincenzo, J.

Note: Order does not necessarily reflect citation order of authors.

Citation: Grad, Y. H., R. Newman, M. Zody, X. Yang, R. Murphy, J. Qu, C. M. Malboeuf, J. Z. Levin, M. Lipsitch, and J. DeVincenzo. 2014. “Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure.” Journal of Virology 88 (13) (April 16): 7286–7293. doi:10.1128/jvi.00038-14.
Full Text & Related Files:
Abstract: Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in infants and young children and an important respiratory pathogen in the elderly and immunocompromised. While population-wide molecular epidemiology studies have shown multiple cocirculating RSV genotypes and revealed antigenic and genetic change over successive seasons, little is known about the extent of viral diversity over the course of an individual infection, the origins of novel variants, or the effect of immune pressure on viral diversity and potential immune-escape mutations. To investigate viral population diversity in the presence and absence of selective immune pressures, we studied whole-genome deep sequencing of RSV in upper airway samples from an infant with severe combined immune deficiency syndrome and persistent RSV infection. The infection continued over several months before and after bone marrow transplant (BMT) from his RSV-immune father. RSV diversity was characterized in 26 samples obtained over 78 days. Diversity increased after engraftment, as defined by T-cell presence, and populations reflected variation mostly within the G protein, the major surface antigen. Minority populations with known palivizumab resistance mutations emerged after its administration. The viral population appeared to diversify in response to selective pressures, showing a statistically significant growth in diversity in the presence of pressure from immunity. Defining escape mutations and their dynamics will be useful in the design and application of novel therapeutics and vaccines. These data can contribute to future studies of the relationship between within-host and population-wide RSV phylodynamics.
Published Version: doi:10.1128/JVI.00038-14
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054443/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:25123559
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters