To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias

DSpace/Manakin Repository

To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias

Citable link to this page

 

 
Title: To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias
Author: Ding, Peng; Miratrix, Luke Weisman

Note: Order does not necessarily reflect citation order of authors.

Citation: Ding, Peng, and Luke W. Miratrix. 2015. “To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias.” Journal of Causal Inference 3 (1) (January 1). doi:10.1515/jci-2013-0021.
Full Text & Related Files:
Abstract: “M-Bias”, as it is called in the epidemiological literature, is the bias introduced by conditioning on a pretreatment covariate due to a particular “M-Structure” between two latent factors, an observed treatment, an outcome, and a “collider”. This potential source of bias, which can occur even when the treatment and the outcome are not confounded, has been a source of considerable controversy. We here present formulae for identifying under which circumstances biases are inflated or reduced. In particular, we show that the magnitude of M-Bias in Gaussian linear structural equation models tends to be relatively small compared to confounding bias, suggesting that it is generally not a serious concern in many applied settings. These theoretical results are consistent with recent empirical findings from simulation studies. We also generalize the M-Bias setting to allow for the correlation between the latent factors to be nonzero, and to allow for the collider to also be a confounder between the treatment and the outcome. These results demonstrate that mild deviations from the M-Structure tend to increase confounding bias more rapidly than M-bias, suggesting that choosing to condition on any given covariate is generally the superior choice. As an application, we re-examine a controversial example between Professors Donald Rubin and Judea Pearl.
Published Version: 10.1515/jci-2013-0021
Other Sources: http://arxiv.org/pdf/1408.0324v1.pdf
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:25207409
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters