A General Importance Sampling Algorithm for Probabilistic Programs

DSpace/Manakin Repository

A General Importance Sampling Algorithm for Probabilistic Programs

Citable link to this page

 

 
Title: A General Importance Sampling Algorithm for Probabilistic Programs
Author: Pfeffer, Avi
Citation: Pfeffer, Avi. 2007. A General Importance Sampling Algorithm for Probabilistic Programs. Harvard Computer Science Group Technical Report TR-12-07.
Full Text & Related Files:
Abstract: Highly expressive probabilistic modeling languages are capable of describing a wide variety of models. Some of these models are quite complex, so approximate inference algorithms are needed. One approach to approximate inference is importance sampling, but this can be hard to do in expressive languages because of the many deterministic relationships between concepts. This paper presents an importance sampling algorithm for the IBAL language based on the principle of using the structure of a model to infer as much as possible about a decision before making a commitment. The paper demonstrates using a musical example how easy it is to encode interesting new models in IBAL. Results show that the importance sampling algorithm is able to make useful inferences, and is far superior to a rejection sampling algorithm. The paper presents proof of concept on the musical example that the algorithm is capable of handling real applications.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:25235125
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters