Genome-wide introgression among distantly related Heliconius butterfly species

DSpace/Manakin Repository

Genome-wide introgression among distantly related Heliconius butterfly species

Citable link to this page

 

 
Title: Genome-wide introgression among distantly related Heliconius butterfly species
Author: Zhang, Wei; Dasmahapatra, Kanchon K.; Mallet, James; Moreira, Gilson R. P.; Kronforst, Marcus R.

Note: Order does not necessarily reflect citation order of authors.

Citation: Zhang, Wei, Kanchon K. Dasmahapatra, James Mallet, Gilson R. P. Moreira, and Marcus R. Kronforst. 2016. “Genome-wide introgression among distantly related Heliconius butterfly species.” Genome Biology 17 (1): 25. doi:10.1186/s13059-016-0889-0. http://dx.doi.org/10.1186/s13059-016-0889-0.
Full Text & Related Files:
Abstract: Background: Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. Results: We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Conclusions: Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0889-0) contains supplementary material, which is available to authorized users.
Published Version: doi:10.1186/s13059-016-0889-0
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769579/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:25658510
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters