Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

View/ Open
Author
Pirela, Sandra V.
Miousse, Isabelle R.
Lu, Xiaoyan
Castranova, Vincent
Thomas, Treye
Qian, Yong
Bello, Dhimiter
Koturbash, Igor
Demokritou, Philip
Published Version
https://doi.org/10.1289/ehp.1409582Metadata
Show full item recordCitation
Pirela, Sandra V., Isabelle R. Miousse, Xiaoyan Lu, Vincent Castranova, Treye Thomas, Yong Qian, Dhimiter Bello, Lester Kobzik, Igor Koturbash, and Philip Demokritou. 2015. “Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts.” Environmental Health Perspectives 124 (2): 210-219. doi:10.1289/ehp.1409582. http://dx.doi.org/10.1289/ehp.1409582.Abstract
Background: Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives: We assessed the biological responses of a panel of human cell lines to PEPs. Methods: Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results: PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions: The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in vitro analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ Health Perspect 124:210–219; http://dx.doi.org/10.1289/ehp.1409582Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749083/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25658527
Collections
- HMS Scholarly Articles [17298]
- SPH Scholarly Articles [6269]
Contact administrator regarding this item (to report mistakes or request changes)