Show simple item record

dc.contributor.authorWilliams, Lauren
dc.date.accessioned2009-02-23T00:42:17Z
dc.date.issued1996
dc.identifier.citationWilliams, Lauren K. 1996. Enumerating up-side self-avoiding walks on integer lattices. Electronic Journal of Combinatorics 3(1): #R31.en
dc.identifier.issn1097-1440en
dc.identifier.issn1077-8926en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:2624680
dc.description.abstractA self-avoiding walk (saw) is a path on a lattice that does not pass through the same point twice. Though mathematicians have studied saws for over fifty years, the number of n-step saws is unknown. This paper examines a special case of this problem, finding the number of n-step "up-side'' saws (ussaws), saws restricted to moving up and sideways. It presents formulas for the number of n-step ussaws on various lattices, found using generating functions with decomposition and recursive methods.en
dc.description.sponsorshipMathematicsen
dc.language.isoen_USen
dc.publisherInternational Press (Cambridge, MA)en
dc.relation.isversionofhttp://www.combinatorics.org/Volume_3/volume3.html#R31en
dash.licenseLAA
dc.titleEnumerating Up-Side Self-Avoiding Walks on Integer Latticesen
dc.relation.journalElectronic Journal of Combinatoricsen
dash.depositing.authorWilliams, Lauren
dash.contributor.affiliatedWilliams, Lauren


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record