Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses

DSpace/Manakin Repository

Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses

Citable link to this page

 

 
Title: Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses
Author: Sharp, Jared D.; Singh, Atul K.; Park, Sang Tae; Lyubetskaya, Anna; Peterson, Matthew W.; Gomes, Antonio L. C.; Potluri, Lakshmi-Prasad; Raman, Sahadevan; Galagan, James E.; Husson, Robert N.

Note: Order does not necessarily reflect citation order of authors.

Citation: Sharp, Jared D., Atul K. Singh, Sang Tae Park, Anna Lyubetskaya, Matthew W. Peterson, Antonio L. C. Gomes, Lakshmi-Prasad Potluri, Sahadevan Raman, James E. Galagan, and Robert N. Husson. 2016. “Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.” PLoS ONE 11 (3): e0152145. doi:10.1371/journal.pone.0152145. http://dx.doi.org/10.1371/journal.pone.0152145.
Full Text & Related Files:
Abstract: Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.
Published Version: doi:10.1371/journal.pone.0152145
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803200/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318684
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters