Hierarchical and Variational Geometric Modeling with Wavelets
Published Version
https://doi.org/10.1145/199404.199410Metadata
Show full item recordCitation
Gortler, Steven J. and Michael F. Cohen. 1995. Hierarchical and variational geometric modeling with wavelets. In Proceedings of the 1995 symposium on interactive 3D graphics (SIGGRAPH 1995), April 9-12, 1995, Monterey, California, ed. SIGGRAPH and Michael J. Zyda, 35-42, 205. New York: ACM Press.Abstract
This paper discusses how wavelet techniques may be applied to a variety of geometric modeling tools. In particular, wavelet decompositions are shown to be useful for hierarchical control point or least squares editing. In addition, direct curve and surface manipulation methods using an underlying geometric variational principle can be solved more efficiently by using a wavelet basis. Because the wavelet basis is hierarchical, iterative solution methods converge rapidly. Also, since the wavelet coefficients indicate the degree of detail in the solution, the number of basis functions needed to express the variational minimum can be reduced, avoiding unnecessary computation. An implementation of a curve and surface modeler based on these ideas is discussed and experimental results are reported.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634298
Collections
- FAS Scholarly Articles [18172]
Contact administrator regarding this item (to report mistakes or request changes)