Show simple item record

dc.contributor.authorDunn, Timothy Wen_US
dc.contributor.authorMu, Yuen_US
dc.contributor.authorNarayan, Sujathaen_US
dc.contributor.authorRandlett, Owenen_US
dc.contributor.authorNaumann, Eva Aen_US
dc.contributor.authorYang, Chao-Tsungen_US
dc.contributor.authorSchier, Alexander Fen_US
dc.contributor.authorFreeman, Jeremyen_US
dc.contributor.authorEngert, Florianen_US
dc.contributor.authorAhrens, Misha Ben_US
dc.date.accessioned2016-05-02T17:01:13Z
dc.date.issued2016en_US
dc.identifier.citationDunn, Timothy W, Yu Mu, Sujatha Narayan, Owen Randlett, Eva A Naumann, Chao-Tsung Yang, Alexander F Schier, Jeremy Freeman, Florian Engert, and Misha B Ahrens. 2016. “Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion.” eLife 5 (1): e12741. doi:10.7554/eLife.12741. http://dx.doi.org/10.7554/eLife.12741.en
dc.identifier.issn2050-084Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:26860207
dc.description.abstractIn the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments. DOI: http://dx.doi.org/10.7554/eLife.12741.001en
dc.language.isoen_USen
dc.publishereLife Sciences Publications, Ltden
dc.relation.isversionofdoi:10.7554/eLife.12741en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841782/pdf/en
dash.licenseLAAen_US
dc.subjectspontaneous brain activityen
dc.subjectwhole-brain functional imagingen
dc.subjectlarval zebrafishen
dc.subjectexploration strategiesen
dc.subjectneural basis of behavioren
dc.subjecthigher-order motor controlen
dc.subjectZebrafishen
dc.titleBrain-wide mapping of neural activity controlling zebrafish exploratory locomotionen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journaleLifeen
dash.depositing.authorDunn, Timothy Wen_US
dc.date.available2016-05-02T17:01:13Z
dc.identifier.doi10.7554/eLife.12741*
dash.contributor.affiliatedDunn, Timothy
dash.contributor.affiliatedNaumann, Eva A.
dash.contributor.affiliatedRandlett, Owen
dash.contributor.affiliatedEngert, Florian
dash.contributor.affiliatedSchier, Alexander


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record