Sequence determinants of improved CRISPR sgRNA design

DSpace/Manakin Repository

Sequence determinants of improved CRISPR sgRNA design

Citable link to this page


Title: Sequence determinants of improved CRISPR sgRNA design
Author: Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun; Brown, Myles A.; Liu, Xiaole (Shirley) Shirley

Note: Order does not necessarily reflect citation order of authors.

Citation: Xu, Han, Tengfei Xiao, Chen-Hao Chen, Wei Li, Clifford A. Meyer, Qiu Wu, Di Wu, et al. 2015. “Sequence Determinants of Improved CRISPR sgRNA Design.” Genome Res. 25 (8) (June 10): 1147–1157. doi:10.1101/gr.191452.115.
Full Text & Related Files:
Abstract: The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies.
Published Version: doi:10.1101/gr.191452.115
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search