Show simple item record

dc.contributor.authorHatton, B.
dc.contributor.authorMishchenko, L.
dc.contributor.authorDavis, S.
dc.contributor.authorSandhage, K. H.
dc.contributor.authorAizenberg, Joanna
dc.date.accessioned2016-06-06T19:28:45Z
dc.date.issued2010
dc.identifierQuick submit: 2016-04-08T12:49:01-0400
dc.identifier.citationHatton, B., L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg. 2010. “Assembly of Large-Area, Highly Ordered, Crack-Free Inverse Opal Films.” Proceedings of the National Academy of Sciences 107 (23) (May 19): 10354–10359. doi:10.1073/pnas.1000954107.en_US
dc.identifier.issn0027-8424en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:27225687
dc.description.abstractWhereas considerable interest exists in self-assembly of well-ordered, porous “inverse opal” structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite colloidal crystal films have been generated via evaporative deposition of polymeric colloidal spheres suspended within a hydrolyzed silicate sol-gel precursor solution. The coassembly of a sacrificial colloidal template with a matrix material avoids the need for liquid infiltration into the preassembled colloidal crystal and minimizes the associated cracking and inhomogeneities of the resulting inverse opal films. We discuss the underlying mechanisms that may account for the formation of large-area defect-free films, their unique preferential growth along the 〈110〉 direction and unusual fracture behavior. We demonstrate that this coassembly approach allows the fabrication of hierarchical structures not achievable by conventional methods, such as multilayered films and deposition onto patterned or curved surfaces. These robust SiO2 inverse opals can be transformed into various materials that retain the morphology and order of the original films, as exemplified by the reactive conversion into Si or TiO2 replicas. We show that colloidal coassembly is available for a range of organometallic sol-gel and polymer matrix precursors, and represents a simple, low-cost, scalable method for generating high-quality, chemically tailorable inverse opal films for a variety of applications.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherProceedings of the National Academy of Sciencesen_US
dc.relation.isversionof10.1073/pnas.1000954107en_US
dash.licenseLAA
dc.subjectcoassemblyen_US
dc.subjectcolloidal assemblyen_US
dc.subjectcrack-free filmsen_US
dc.subjectinverse opalsen_US
dc.subjectnanoporousen_US
dc.titleAssembly of large-area, highly ordered, crack-free inverse opal filmsen_US
dc.typeJournal Articleen_US
dc.date.updated2016-04-08T16:49:03Z
dc.description.versionVersion of Recorden_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dash.depositing.authorAizenberg, Joanna
dash.waiver2010-04-20
dc.date.available2010
dc.date.available2016-06-06T19:28:45Z
dc.identifier.doi10.1073/pnas.1000954107*
dash.contributor.affiliatedAizenberg, Joanna


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record