Show simple item record

dc.contributor.authorBorregaard, Johannes
dc.contributor.authorKomar, Peter
dc.contributor.authorKessler, Eric
dc.contributor.authorLukin, Mikhail D.
dc.contributor.authorSørensen, A. S.
dc.date.accessioned2016-07-21T19:20:43Z
dc.date.issued2015
dc.identifier.citationBorregaard, J., P. Kómár, E. M. Kessler, M. D. Lukin, and A. S. Sørensen. 2015. “Long-Distance Entanglement Distribution Using Individual Atoms in Optical Cavities.” Physical Review A 92 (1) (July). doi:10.1103/physreva.92.012307.en_US
dc.identifier.issn1050-2947en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:27726997
dc.description.abstractIndividual atoms in optical cavities can provide an efficient interface between stationary qubits and flying qubits (photons), which is an essential building block for quantum communication. Furthermore, cavity-assisted controlled-not (cnot) gates can be used for swapping entanglement to long distances in a quantum repeater setup. Nonetheless, dissipation introduced by the cavity during the cnot may increase the experimental difficulty in obtaining long-distance entanglement distribution using these systems. We analyze and compare a number of cavity-based repeater schemes combining various entanglement generation schemes and cavity-assisted cnot gates. We find that a scheme, where high-fidelity entanglement is first generated in a two-photon detection scheme and then swapped to long distances using a recently proposed heralded controlled-Z (cz) gate, exhibits superior performance compared to the other schemes. The heralded gate moves the effect of dissipation from the fidelity to the success probability of the gate thereby enabling high-fidelity entanglement swapping. As a result, high-rate entanglement distribution can be achieved over long distances even for low cooperativities of the atom-cavity systems. This high-fidelity repeater is shown to outperform the other cavity-based schemes by up to two orders of magnitude in the rate for realistic parameters and large distances (1000 km).en_US
dc.description.sponsorshipPhysicsen_US
dc.language.isoen_USen_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofdoi:10.1103/PhysRevA.92.012307en_US
dc.relation.hasversionhttp://arxiv.org/abs/1504.03703en_US
dash.licenseLAA
dc.titleLong-distance entanglement distribution using individual atoms in optical cavitiesen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPhys. Rev. Aen_US
dash.depositing.authorLukin, Mikhail D.
dc.date.available2016-07-21T19:20:43Z
dc.identifier.doi10.1103/PhysRevA.92.012307*
dash.authorsorderedfalse
dash.contributor.affiliatedBorregaard, Johannes
dash.contributor.affiliatedKessler, Eric
dash.contributor.affiliatedKomar, Peter
dash.contributor.affiliatedLukin, Mikhail


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record