A new equilibrium torus solution and GRMHD initial conditions

DSpace/Manakin Repository

A new equilibrium torus solution and GRMHD initial conditions

Citable link to this page


Title: A new equilibrium torus solution and GRMHD initial conditions
Author: Penna, Robert F.; Kulkarni, Akshay; Narayan, Ramesh

Note: Order does not necessarily reflect citation order of authors.

Citation: Penna, Robert F., Akshay Kulkarni, and Ramesh Narayan. 2013. “A New Equilibrium Torus Solution and GRMHD Initial Conditions.” A&A 559 (November): A116. doi:10.1051/0004-6361/201219666.
Full Text & Related Files:
Abstract: Context. General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. Aims. In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. Methods. We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. Results. The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. Conclusions. While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.
Published Version: doi:10.1051/0004-6361/201219666
Other Sources: http://arxiv.org/abs/1309.3680
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:27802025
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search