Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using It to Predict the Spins of Six Black Holes

DSpace/Manakin Repository

Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using It to Predict the Spins of Six Black Holes

Citable link to this page

 

 
Title: Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using It to Predict the Spins of Six Black Holes
Author: Steiner, James F.; McClintock, Jeffrey E.; Narayan, Ramesh

Note: Order does not necessarily reflect citation order of authors.

Citation: Steiner, James F., Jeffrey E. McClintock, and Ramesh Narayan. 2012. Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using It to Predict the Spins of Six Black Holes. The Astrophysical Journal 762, no. 2: 104. doi:10.1088/0004-637x/762/2/104.
Full Text & Related Files:
Abstract: Using 5 GHz radio luminosity at light-curve maximum as a proxy for jet power and black hole spin measurements obtained via the continuum-fitting method, Narayan & McClintock presented the first direct evidence for a relationship between jet power and black hole spin for four transient black hole binaries. We test and confirm their empirical relationship using a fifth source, H1743–322, whose spin was recently measured. We show that this relationship is consistent with Fe-line spin measurements provided that the black hole spin axis is assumed to be aligned with the binary angular momentum axis. We also show that, during a major outburst of a black hole transient, the system reasonably approximates an X-ray standard candle. We further show, using the standard synchrotron bubble model, that the radio luminosity at light-curve maximum is a good proxy for jet kinetic energy. Thus, the observed tight correlation between radio power and black hole spin indicates a strong underlying link between mechanical jet power and black hole spin. Using the fitted correlation between radio power and spin for the above five calibration sources, we predict the spins of six other black holes in X-ray/radio transient systems with low-mass companions. Remarkably, these predicted spins are all relatively low, especially when compared to the high measured spins of black holes in persistent, wind-fed systems with massive companions.
Published Version: doi:10.1088/0004-637X/762/2/104
Other Sources: https://arxiv.org/abs/1211.5379
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:27804414
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters