Show simple item record

dc.contributor.authorShafee, Rebecca
dc.contributor.authorNarayan, Ramesh
dc.contributor.authorMcClintock, Jeffrey E.
dc.date.accessioned2016-08-05T18:55:42Z
dc.date.issued2008
dc.identifier.citationShafee, Rebecca, Ramesh Narayan, and Jeffrey E. McClintock. 2008. “Viscous Torque and Dissipation in the Inner Regions of a Thin Accretion Disk: Implications for Measuring Black Hole Spin.” The Astrophysical Journal 676 (1) (March 20): 549–561. doi:10.1086/527346.en_US
dc.identifier.issn0004-637Xen_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:27814541
dc.description.abstractWe consider a simple Newtonian model of a steady accretion disk around a black hole. The model is based on height-integrated hydrodynamic equations, -viscosity, and a pseudo-Newtonian potential which results in an innermost stable circular orbit ( ISCO) that closely approximates the one predicted by general relativity. We find that, as the disk thickness H/R or the value of increases, the hydrodynamic model exhibits increasing deviations from the standard thin disk model of Shakura and Sunyaev. The latter is an analytical model in which the viscous torque is assumed to vanish at the ISCO. We consider the implications of the results for attempts to estimate black hole spin by using the standard disk model to fit continuum spectra of black hole accretion disks. We find that the error in the spin estimate is quite modest so long as H/R 0:1 and 0:2. At worst, the error in the estimated value of the spin parameter is 0.1 for a nonspinning black hole; the error is much less for a rapidly spinning hole. We also consider the density and disk thickness contrast between the gas in the disk and that inside the ISCO. The contrast needs to be large if black hole spin is to be successfully estimated by fitting the relativistically broadened X-ray line profile of fluorescent iron emission from reflection off an accretion disk. In our hydrodynamic models, the contrast in density and thickness is low when H/Rk0:1, suggesting that the iron line technique may be most reliable in extremely thin disks. We caution that these results have been obtained with a viscous hydrodynamic model. While our results are likely to be qualitatively correct, quantitative estimates of, e.g., the magnitude of the error in the spin estimate, need to be confirmed with MHD simulations of radiatively cooled thin disks.en_US
dc.description.sponsorshipAstronomyen_US
dc.language.isoen_USen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofdoi:10.1086/527346en_US
dc.relation.hasversionhttp://arxiv.org/abs/0705.2244en_US
dash.licenseLAA
dc.subjectaccretion, accretion disksen_US
dc.subjectbinaries: closeen_US
dc.subjectblack hole physicsen_US
dc.subjectX-rays: starsen_US
dc.titleViscous Torque and Dissipation in the Inner Regions of a Thin Accretion Disk: Implications for Measuring Black Hole Spinen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalApJen_US
dash.depositing.authorNarayan, Ramesh
dc.date.available2016-08-05T18:55:42Z
dc.identifier.doi10.1086/527346*
dash.contributor.affiliatedShafee, Rebecca
dash.contributor.affiliatedNarayan, Ramesh
dash.contributor.affiliatedMcClintock, Jeffrey


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record