Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

DSpace/Manakin Repository

Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

Citable link to this page


Title: Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration
Author: Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D.; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A.; Megason, Sean G.; Li, Huawei; Chen, Zheng-Yi

Note: Order does not necessarily reflect citation order of authors.

Citation: Lee, S. G., M. Huang, N. D. Obholzer, S. Sun, W. Li, M. Petrillo, P. Dai, et al. 2016. “Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.” PLoS ONE 11 (6): e0157768. doi:10.1371/journal.pone.0157768.
Full Text & Related Files:
Abstract: Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.
Published Version: doi:10.1371/journal.pone.0157768
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search