Quantum noise analysis of spin systems realized with cold atoms

DSpace/Manakin Repository

Quantum noise analysis of spin systems realized with cold atoms

Citable link to this page


Title: Quantum noise analysis of spin systems realized with cold atoms
Author: Cherng, Robert W; Demler, Eugene A.

Note: Order does not necessarily reflect citation order of authors.

Citation: Cherng, Robert W, and Eugene Demler. 2007. “Quantum Noise Analysis of Spin Systems Realized with Cold Atoms.” New J. Phys. 9 (1) (January 18): 7–7. doi:10.1088/1367-2630/9/1/007.
Full Text & Related Files:
Abstract: We consider the use of quantum noise to characterize many-body states of spin systems realized with ultracold atomic systems. These systems offer a wealth of experimental techniques for realizing strongly interacting many-body states in a regime with a large but not macroscopic number of atoms. In this regime, fluctuations of an observable such as the magnetization are discernible compared to the mean value. The full distribution function is experimentally relevant and encodes high order correlation functions that may distinguish various many-body states. We apply quantum noise analysis to the Ising model in a transverse field and find a distinctive even versus odd splitting in the distribution function for the transverse magnetization that distinguishes between the ordered, critical, and disordered phases. We also discuss experimental issues relevant for applying quantum noise analysis for general spin systems and the specific results obtained for the Ising model.
Published Version: doi:10.1088/1367-2630/9/1/007
Other Sources: http://arxiv.org/abs/cond-mat/0609748
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:27891680
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search