Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors

DSpace/Manakin Repository

Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors

Citable link to this page

 

 
Title: Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors
Author: Zhang, Ying; Demler, Eugene A.; Sachdev, Subir

Note: Order does not necessarily reflect citation order of authors.

Citation: Zhang, Ying, Eugene Demler, and Subir Sachdev. 2002. “Competing Orders in a Magnetic Field: Spin and Charge Order in the Cuprate Superconductors.” Physical Review B 66 (9) (September 3). doi:10.1103/physrevb.66.094501.
Full Text & Related Files:
Abstract: We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large- N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin-density-wave order, and to the mag- netic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron-scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the ‘‘spin-gap’’ phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning-tunneling-microscopy
STM measurements. We show that, with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic-neutron-scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron-scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin- and charge-order parameters, including spin nematics and phases with ‘‘exciton fractionalization.’’
Published Version: doi:10.1103/PhysRevB.66.094501
Other Sources: http://arxiv.org/abs/cond-mat/0112343
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:27945842
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters