Show simple item record

dc.contributor.authorElkies, Noam
dc.contributor.authorPretorius, Lou M.
dc.contributor.authorSwanepoel, Konrad J.
dc.date.accessioned2009-04-13T17:05:22Z
dc.date.issued2006
dc.identifier.citationElkies, Noam D., Lou M. Pretorius, and Konrad J. Swanepoel. 2006. Sylvester-gallai theorems for complex numbers and quaternions. Discrete and Computational Geometry 35, (3): 361-373.en
dc.identifier.issn1432-0444en
dc.identifier.issn0179-5376en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:2794828
dc.description.abstractA Sylvester-Gallai (SG) configuration is a finite set S of points such that the line through any two points in S contains a third point of S. According to the Sylvester-Gallai theorem, an SG configuration in real projective space must be collinear. A problem of Serre (1966) asks whether an SG configuration in a complex projective space must be coplanar. This was proved by Kelly (1986) using a deep inequality of Hirzebruch. We give an elementary proof of this result, and then extend it to show that an SG configuration in projective space over the quaternions must be contained in a three-dimensional flat.en
dc.description.sponsorshipMathematicsen
dc.publisherSpringer Verlagen
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-005-1226-7en
dash.licenseLAA
dc.titleSylvester-Gallai Theorems for Complex Numbers and Quaternionsen
dc.relation.journalDiscrete and Computational Geometryen
dash.depositing.authorElkies, Noam
dc.identifier.doi10.1007/s00454-005-1226-7*
dash.contributor.affiliatedElkies, Noam


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record